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Abstract

We present an enhanced hybrid approach to OWL query an-
swering that combines an RDF triple-store with an OWL
reasoner in order to provide scalable pay-as-you-go perfor-
mance. The enhancements presented here include an exten-
sion to deal with arbitrary OWL ontologies, and optimisations
that significantly improve scalability. We have implemented
these techniques in a prototype system, a preliminary evalua-
tion of which has produced very encouraging results.

1 Introduction
The use of RDF (Manola and Miller 2004) and SPARQL
(W3C SPARQL Working Group 2013) to store and access
semi-structured data is increasingly widespread. In many
cases, an OWL ontology is used to formally specify the
meaning of data (Motik, Patel-Schneider, and Parsia 2009),
as well as to enhance query answers with tuples that are only
entailed by the combination of the ontology and data.

Unfortunately, computing such answers is of high worst
case complexity, and although heavily optimised, existing
systems for query answering w.r.t. RDF data and an unre-
stricted OWL 2 ontology can process only small to medium
size datasets (Möller et al. 2013; Wandelt, Möller, and Wes-
sel 2010; Kollia and Glimm 2013). This has led to the devel-
opment of query answering procedures that are more scal-
able, but that can (fully) process only fragments of OWL 2,
and several prominent fragments have now been standard-
ised as OWL 2 profiles (Motik et al. 2009). Such systems
have been shown to be (potentially) highly scalable (Ur-
bani et al. 2012; Bishop et al. 2011; Urbani et al. 2011;
Wu et al. 2008), but if the ontology falls outside the rele-
vant profile, then the answers computed by such a system
may be incomplete: if it returns an answer, then all tuples
in the answer are (usually) valid, but some valid tuples may
be missing from the answer. When used with out-of-profile
ontologies, a query answer computed by such a system can
thus be understood as providing a lower-bound on the cor-
rect answer; however, they cannot in general provide any
upper bound or even any indication as to how complete the
computed answer is (Cuenca Grau et al. 2012).
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More recently, we have proposed a hybrid approach that
addresses some of these issues. This approach uses a triple
store with OWL 2 RL reasoning capabilities to compute not
only the usual lower bound answer, but also an upper bound
answer, in the latter case by rewriting the input ontology into
a strictly stronger OWL 2 RL ontology (Zhou et al. 2013b).
If lower and upper bound answers coincide, they obviously
provide a sound and complete answer. Otherwise, relevant
fragments of the ontology and data can be extracted that are
guaranteed to be sufficient to test the validity of tuples in the
“gap” between the two answers; these fragments are typi-
cally much smaller than the input ontology and data, and
may thus allow for checking the gap tuples using an OWL
2 reasoner such as HermiT (Motik, Shearer, and Horrocks
2009) or Pellet (Sirin et al. 2007). This extraction and check-
ing step was, however, only proven to be correct for Horn on-
tologies, and also suffered from scalability issues both w.r.t.
the extraction itself and the subsequent checking.

In this paper, we present several important enhancements
to this hybrid approach. First, we show how the lower bound
can be tightened by integrating scalable reasoning tech-
niques for other OWL 2 profiles. Second, we show how to
extend the relevant fragment extraction procedure so that it
is correct for arbitrary OWL 2 ontologies, and how to use
the triple store itself to compute these fragments. Finally, we
show how summarisation techniques inspired by the SHER
system (Dolby et al. 2007; 2009) can be used to tighten the
upper bound on query answers, thus further reducing the re-
quirement for fully-fledged OWL 2 reasoning.

We have implemented our procedure in a prototypical sys-
tem using the RDFox triple store (Motik et al. 2014) and we
present a preliminary evaluation over both benchmark and
realistic data which suggests that the system can provide
scalable pay-as-you-go query answering for a wide range
of OWL 2 ontologies, RDF data and queries. In almost all
cases, the system is able to completely answer queries with-
out resorting to fully-fledged OWL 2 reasoning, and even
when this is not the case, relevant fragment extraction and
summarisation are effective in reducing the size of the prob-
lem to manageable proportions. This paper comes with an
online technical report with all proofs.1

1http://www.cs.ox.ac.uk/isg/people/yujiao.zhou/#publications



2 Preliminaries
We adopt standard first order logic notions, such as vari-
ables, constants, atoms, formulas, clauses, substitutions, sat-
isfiability, and entailment (Bachmair and Ganzinger 2001).
We also assume basic familarity with OWL 2 (Motik, Patel-
Schneider, and Parsia 2009) and its profiles (Motik et al.
2009).

Datalog Languages Extended datalog languages are well-
known KR formalisms based on rules, and they have many
connections with OWL 2. A generalised rule (or just a rule)
is a function-free first order sentence of the form

∀x (

n∧
j=0

Bj(x)→
m∨
i=0

∃yi ϕi(x,yi))

where Bj(x) are body atoms and ϕi are conjunctions of
head atoms. The universal quantifiers are left implicit from
now on. A rule is Horn if m ≤ 1, and it is datalog if it is
Horn and does not contain existential quantifiers. A fact is a
ground atom and a dataset is a finite set of facts. A knowl-
edge base K consists of a finite set of rules and a dataset.
We treat equality (≈) in knowledge bases as an ordinary
predicate, but assume that every knowledge base in which
equality occurs contains the axioms of equality for its sig-
nature. Each OWL 2 ontology can be normalised as one
such knowledge base using the correspondence of OWL and
first order logic and a variant of the structural transforma-
tion (see (Motik, Shearer, and Horrocks 2009) for detais);
furthermore, each OWL 2 RL ontology corresponds to a dat-
alog knowledge base. From now on, we interchangeably use
ontologies and the knowledge bases they correspond to; in
particular, we use OWL 2 RL and datalog interchangeably.

Queries We focus on conjunctive query answering as the
key reasoning problem. A query is a formula of the form
q(x) = ∃yϕ(x,y) with ϕ(x,y) a conjunction of atoms.
Usually, we omit the distinguished variables x of queries
and write just q. The query is atomic if ϕ(x,y) is a single
atom. A tuple of individuals a is a (certain) answer to q w.r.t.
a set of sentences F iff F |= q(a). The set of all answers to
q(x) w.r.t. F is denoted by cert(q,F).

Datalog Reasoning There are two main techniques for
query answering over a datalog knowledge base K. Forward
chaining computes the set Mat(K) of facts entailed by K,
called the materialisation of K. A query q over K can be an-
swered directly over the materialisation. Backward chaining
treats a query as a conjunction of atoms (a goal). An SLD
(Selective Linear Definite) resolvent of a goal A ∧ ψ with a
datalog rule ϕ → C1 ∧ · · · ∧ Cn is a goal ψθ ∧ ϕθ, with
θ the MGU (Most General Unifier) of A and Cj , for some
1 ≤ j ≤ n. An SLD proof of a goalG0 inK is a sequence of
goals (G0, . . . , Gn) with Gn the empty goal (�), and each
Gi+1 a resolvent of Gi and a rule in K.

3 Overview
Background The main idea behind our hybrid approach to
query answering is to exploit a datalog-based triple store to
compute both lower bound (sound but possibly incomplete)

Foreman(x)→ Manag(x) (T1)
Superv(x)→ Manag(x) (T2)

Manag(x)→ Superv(x) ∨ ∃y.(boss(x, y) ∧Manag(y)) (T3)
Superv(x) ∧ boss(x, y)→Worker(y) (T4)

TeamLead(x) ∧ boss(x, y) ∧Manag(y)→ (T5)
Manag(x)→ ∃y.(boss(x, y)) (T6)

Manag(Sue) (D1)
Superv(Dan) (D2)
Superv(Rob) (D3)

boss(Dan,Ben) (D4)
Manag(Jo) (D5)

TeamLead(Jo) (D6)
boss(Jane,Rob) (D7)

Figure 1: Example knowledge base Kex.

and upper bound (complete but possibly unsound) query
answers (Zhou et al. 2013a; 2013b). Given a knowledge
base K and a query q, this is achieved by computing data-
log knowledge bases L(K) and U(K) s.t. cert(q,L(K)) ⊆
cert(q,K) ⊆ cert(q,U(K)). In (Zhou et al. 2013a), L(K)
was simply the subset of datalog rules in K and hence
K |= L(K). In turn, U(K) is the result of consecutively
applying the transformations Σ, Ξ and Ψ defined next. Σ
renders a knowledge base into a set of clauses via standard
Skolemisation. Ξ transforms a set of clauses into a satisfi-
able set of Horn clauses, by first adding a nullary atom ⊥
to each negative clause, and then splitting each non-Horn
clause into several clauses (one for each positive literal). Fi-
nally, Ψ transforms the output of Ξ by replacing each func-
tional term by a fresh constant and replacing clauses by their
equivalent datalog rules. Both, L(K) and U(K) are indepen-
dent from query and data (they depend on the rules in K).

We demonstrate these basic ideas using the knowledge
base Kex in Figure 1, which we use as a running example.
The query qex asks for individuals that manage a worker.

qex(x) = ∃y(boss(x, y) ∧Worker(y))

We have that cert(qex,Kex) = {Dan,Rob, Jo}. The lower
bound knowledge base L(Kex) consists of facts D1-D7 and
the following datalog rules.

Foreman(x)→ Manag(x) (L1)
Superv(x)→ Manag(x) (L2)

Superv(x) ∧ boss(x, y)→Worker(y) (L4)
TeamLead(x) ∧ boss(x, y) ∧Manag(y)→ (L5)

The upper bound U(Kex) extends L(Kex) with the rules
given next, where c1 and c2 are fresh constants:

Manag(x)→ Superv(x) (U1
3 )

Manag(x)→ boss(x, c1) (U2
3 )

Manag(x)→ Manag(c1) (U3
3 )

Manag(x)→ boss(x, c2) (U6)

It is easy to verify that cert(qex,L(Kex)) = {Dan} and
that cert(qex,U(Kex)) = {Sue,Dan,Rob, Jo}.

For a knowledge base K like the one above, for which
cert(q,L(K)) ( cert(q,U(K)), we check for each “gap”



tuple a ∈ cert(q,U(K)) \ cert(q,L(K)) whether a ∈
cert(q,K). This could be achieved simply by using a fully-
fledged OWL 2 reasoner to check if K |= q(a), but this is
typically not feasible for large datasets (Zhou et al. 2013a).
In order to address this issue, we use backwards chain-
ing reasoning over U(K) to extract a (typically small) rel-
evant subset Kf of the original knowledge base K such that
a ∈ cert(q,K) iff a ∈ cert(q,Kf ); a fully-fledged OWL
2 reasoner is then used to compute cert(q,Kf ) (Zhou et al.
2013b). Unfortunately, this fragment extraction technique is
only answer preserving for Horn ontologies, and thus the
technique as a whole can only guarantee to compute sound
and complete answers when K is Horn. Moreover, the ex-
traction technique can lead to memory exhaustion in prac-
tice, and even when successful, computing cert(q,Kf ) can
still be challenging for fully-fledged OWL 2 reasoners (Zhou
et al. 2013a).

New Contributions In the following sections we show
how our technique can be extended so as to deal with ar-
bitrary ontologies, and to improve the quality and scalability
of lower and upper bound computations. In Section 4, we
show how the lower bound answer can be tightened by addi-
tionally applying other scalable query answering procedures
that also rely on datalog reasoning. In Section 5, we show
how our fragment extraction technique can be extended to
deal with non-Horn ontologies, and how the datalog engine
itself can be used to perform the extraction. Finally, in Sec-
tion 6, we show how a summarisation technique inspired by
the SHER system can be used to tighten the upper bound by
ruling out “obvious” non-answers, and how we can further
exploit this idea to reduce the number of calls to the fully-
fledged OWL 2 reasoner.

Our approach is pay-as-you-go in the sense that the bulk
of the computation is delegated to a highly scalable datalog
engine. Although our main goal is to answer queries over
OWL 2 ontologies efficiently, our technical results are very
general and hence our approach is not restricted to OWL.
More precisely, given a first-order KR language L that can
be captured by generalised rules and over which we want
to answer conjunctive queries, our only assumption is the
availability of a fully-fledged reasoner for L and a datalog
reasoner, which are both used as a “black box”.

Related techniques. The SCREECH system (Tserendorj et
al. 2008) first exploits the KAON2 reasoner (Hustadt, Motik,
and Sattler 2007) to rewrite a SHIQ ontology into dis-
junctive datalog while preserving atomic queries, and then
transforms ∨ into ∧; the resulting over-approximation can
be used to compute upper bound query answers. However,
this technique is restricted to SHIQ ontologies and atomic
queries; furthermore, the set of rules obtained from KAON2
can be expensive to compute, as well as of exponential size.
Both the QUILL system (Pan, Thomas, and Zhao 2009)
and the work of (Wandelt, Möller, and Wessel 2010) under-
approximate the ontology into OWL 2 QL; however, neither
approximation is independent of both query and data, and
using OWL 2 QL increases the chances that the approxi-
mated ontology will be unsatisfiable.

The SHER system uses summarisation (see Section 6 for

details) to efficiently compute an upper bound answer, with
exact answers then being computed via successive relax-
ations (Dolby et al. 2007; 2009). The technique has been
shown to be scalable in practice, but it is only known to be
applicable to SHIN and atomic queries, and is less mod-
ular than our approach. In contrast, our approach can prof-
itably exploit the summarisation technique, and could even
improve scalability for the hardest queries by replacing Her-
miT with SHER when the extracted fragment is SHIN .

4 Tightening Lower Bounds
A direct way to compute lower bound answers given K and
q is to select the datalog fragment L(K) of K and compute
cert(q,L(K)) using the datalog engine. If K is an OWL 2
knowledge base, however, it is possible to further exploit
the datalog engine to compute a larger set of lower bound
answers. To this end, of particular interest is the combined
approach introduced to handle query answering in ELHOr

⊥
(Stefanoni, Motik, and Horrocks 2013)—a logic that cap-
tures most of OWL 2 EL. Given an ELHOr

⊥ knowledge
baseK′ and a query q, the combined approach first computes
the upper bound datalog program U(K′) and the correspond-
ing answers cert(q,U(K′)). A subsequent filtering step Φ,
which is efficiently implementable, guarantees to eliminate
all spurious tuples; the resulting answer Φ(cert(q,U(K′)))
is thus sound and complete w.r.t. q and K′.

The combined approach is clearly compatible with ours.
Given an OWL 2 knowledge base K and query q, the proce-
dure we use consists of the following steps. First, as in our
earlier work, we select the datalog fragment K1 = L(K),
and compute the materialisation Mat(K1) using the datalog
engine. Second, we select the subset K2 of K correspond-
ing to ELHOr

⊥ axioms and Skolemise existential quanti-
fiers to constants to obtain U(K2). Then, we further compute
the answers cert(q,U(K2) ∪Mat(K1)). Finally, we apply
the aforementioned filtering step Φ to obtain the final set of
lower bound answers. Note that K1 and K2 are, in general,
neither disjoint nor contained within each other.

The ELHOr
⊥ fragment for our running exampleKex con-

sists of axioms T1, T2, T4 and T6, and the resulting new
lower bound answer of qex is the set {Dan,Rob}.

5 Computing Relevant Fragments
If lower and upper bound answers coincide, and U(K) does
not entail the nullary atom ⊥, then we have fully answered
the query q. Otherwise, we consider the remaining candidate
answers S and compute a (hopefully small) fragment of K
that is sufficient to determine whether K is satisfiable, as
well as whether each tuple in S is indeed an answer to q.

The Horn Case In (Zhou et al. 2013b) we proposed an al-
gorithm for computing such a fragment for the specific case
whereK is Horn. The algorithm proceeds in two steps. First,
if U(K) is found to entail ⊥, the algorithm computes a frag-
ment K⊥ of K. If K is found to be satisfiable, then the al-
gorithm computes K[q,S] for the relevant candidate answers
S and checks each of them using the fully-fledged reasoner.
The relevant fragment extraction is done by an inspection of
all SLD proofs in U(K) of ⊥ (for the first step) and each



b(R, y) ∧W (y)
M(R) ∧W (y) by U6

S(R) ∧W (c1) by U3
3

W (c1) by D2

S(x) ∧m(x, c1) by L4

b(R, c2) by D2

M(R) by U6

S(R) by L2

� by D2

Table 1: An SLD proof of qex(Rob) in U(Kex)

answer in S (for the second step). The two fragments are
defined as follows.
Definition 1. Let K be a knowledge base, q(x) be a query,
and S be a set of tuples. Then K⊥ (resp. K[q,S]) is the set of
all α ∈ K for which there exists β ∈ U(α) involved in an
SLD proof of ⊥ (resp. Q(a), for some a ∈ S) in U(K).

Consider the SLD proof of qex(Rob) in U(Kex) presented
in Table 1, where predicates and constants are abbreviated
to their first letters. By Definition 1, T2, T4, T6, and D2 are
included inKex

[qex,{Rob}], which will entail qex(Rob). Note
that, in general we need to consider all proofs of qex(Rob)
in U(Kex), since U(Kex) overapproximates Kex.

This technique is, however, only complete for Horn
knowledge bases. Indeed, recall that Jo ∈ cert(qex,Kex),
and note that every fragment of Kex that entails qex(Jo)
must include rule T5. According to Definition 1, K[q,{Jo}]
will include T5 if and only if L5 is used in an SLD proof of
qex(Jo) in U(Kex). However, no such proof will involveL5,
since the goal qex(Jo) does not involve ⊥, and there is no
way of eliminating ⊥ from a goal using the rules in U(Kex)
since they do not contain ⊥ in their bodies.

The General Case This technique can be extended to the
general case by taking into account interactions between
non-Horn rules and rules with ⊥ in the head. In particular,
we show that extending K[q,S] with K⊥ when checking can-
didate answers suffices to ensure completeness.
Theorem 1. LetK be a knowledge base, q(x) a conjunctive
query, and S a set of tuples. Then, K is satisfiable iff K⊥ is
satisfiable; furthermore, if K is satisfiable, then,
K |= q(a) iff K[q,S] ∪ K⊥ |= q(a) for each a ∈ S.

Consider the proofs of ⊥ and qex(Jo) presented in Ta-
ble 2. According to Definition 1, {T3, . . . , T6, D5, D6} is a
subset ofK⊥∪K[qex,{Jo}], and, hence, one can readily check
that qex(Jo) is entailed by K⊥ ∪ K[qex,{Jo}].

The proof of Theorem 1 is involved, and details are de-
ferred to our online appendix. Nonetheless, we sketch the
arguments behind the proof. A first observation is that,
w.l.o.g., we can restrict ourselves to the case where q is
atomic.
Lemma 1. Let K be a knowledge base, q(x) = ∃yϕ(x,y)
be a conjunctive query, S be a set of tuples, Q be a fresh
predicate, and let K′ = K[q,S] ∪ K⊥, then

K′ |= q(a) iff K′ ∪ {ϕ(x,y)→ Q(x)} |= Q(a)

⊥ b(J, y) ∧W (y)
T (x) ∧ b(x, y) ∧M(y) by L5 M(J) ∧W (c2) by U6

b(J, y) ∧M(y) by D6 W (c2) by D5

M(J) ∧M(c2) by U6 S(x) ∧m(x, c2) by L4

M(c2) by D5 M(x) ∧m(x, c2) by U1
3

M(x) by U3
3 b(J, c2) by D5

� by D5 M(J) by U6

� by D5

Table 2: SLD proofs in U(Kex) of ⊥ and qex(Jo)

The crux of the proof relies on the following properties of
the transformation Ξ (the step in the definition of U which
splits each non-Horn clause C into different Horn clauses).

Lemma 2. Let N be a set of first-order clauses. Then:

• if C ∈ N participates in a refutation in N , then every
C ′ ∈ Ξ(C) is part of an SLD proof of ⊥ in Ξ(N );

• if C ∈ N participates in a resolution proof in N of an
atomic query Q(a), then each C ′ ∈ Ξ(C) participates in
an SLD proof of ⊥ or Q(a) in Ξ(N ).

Thus, by Lemma 2, each resolution proof in a set of
clauses N can be mapped to SLD proofs in Ξ(N ) that
“preserve” the participating clauses. The following lemma,
which recapitulates results shown in (Zhou et al. 2013a), al-
lows us to restate Lemma 2 for Ψ ◦ Ξ instead of Ξ.

Lemma 3. LetH be a set of first-order Horn clauses, Q(x)
be an atomic query, and a be a tuple of constants. If a clause
C participates in an SLD proof of Q(a) in H, then Ψ(C)
participates in an SLD proof of Q(a) in Ψ(H).

With these Lemmas in hand, we can exploit the refuta-
tional completeness of resolution and the entailment preser-
vation properties of Skolemisation to show Theorem 1.

Fragment Computation The computation of the relevant
fragments requires a scalable algorithm for “tracking” all
rules and facts involved in SLD proofs for datalog programs.
We present a novel technique that delegates this task to the
datalog engine itself. The main idea is to extend the data-
log program with additional rules that are responsible for the
tracking; in this way, relevant rules and facts can be obtained
directly from the materialisation of the modified program.

Definition 2. Let K be a datalog knowledge base and let F
be a set of facts in Mat(K). Then, ∆(K, F ) is the datalog
program containing the rules and facts given next:

• each rule and fact in K;
• a fact P̄ (a) for each fact P (~a) in F ;
• the following rules for each rule r ∈ K of the form
B1(x1), . . . , Bm(xm)→ H(x), and every 1 ≤ i ≤ m:

H̄(x) ∧B1(x1) ∧ . . . , Bm(xm)→ S(cr) (1)

H̄(x) ∧B1(x1), . . . ∧Bm(xm)→ B̄i(xi) (2)

where cr is a fresh constant for each rule r, and S is a
globally fresh predicate.

The auxiliary predicates P̄ are used to record facts in-
volved in proofs; in particular, if P̄ (~c) is contained in



Mat(∆(K, F )), then we can conclude thatP (~c) participates
in an SLD proof in K of a fact in F . Furthermore, each rule
r ∈ K is represented by a fresh constant cr, and S is a fresh
predicate that is used to record rules ofK involved in proofs.
In particular, if S(cr) is contained in Mat(∆(K, F )), then
we can conclude that rule r participates in an SLD proof inK
of a fact in F . The additional rules (1) and (2) are responsi-
ble for the tracking and make sure that the materialisation of
∆(K, F ) contains the required information. Indeed, if there
is an instantiationB1(a1)∧ . . .∧Bm(am)→ H(a) of a rule
r ∈ ∆, then, by virtue of (1), cr will be added to S, and, by
virtue of (2), each B̄i(ai), for 1 ≤ i ≤ m, will be derived.
Correctness is established as follows.
Theorem 2. Let K be a datalog knowledge base and let F
be a set of facts in Mat(K). Then, a fact P (a) (resp. a rule
r) in K participates in an SLD proof of some fact in F iff
P̄ (a) (resp. S(cr)) is in Mat(∆(K, F )).

6 Summarisation and Answer Dependencies
Once the relevant fragment has been computed, we still need
to check, using the fully-fledged reasoner, whether it entails
each candidate answer. This can be computationally expen-
sive if either the fragment is large and complex, or there are
many candidate answers to verify.

Data Summarisation To address these issues, we first ex-
ploit summarisation techniques (Dolby et al. 2007) to effi-
ciently prune candidate answers. The main idea behind sum-
marisation is to “shrink” the data in a knowledge base by
merging all constants that instantiate the same unary pred-
icates. Since summarisation is equivalent to extending the
knowledge base with equality assertions between constants,
the summarised knowledge base entails the original one by
the monotonicity of first-order logic.
Definition 3. Let K be a knowledge base. A type T is a set
of unary predicates; for a constant a in K, we say that T =
{A | A(a) ∈ K} is the type for a. Furthermore, for each type
T , let cT be a globally fresh constant uniquely associated
with T . The summary function over K is the substitution σ
mapping each constant a in K to cT , where T is the type for
a. Finally, the knowledge base σ(K) obtained by replacing
each constant a in K with σ(a) is called the summary of K.

By summarising a knowledge base in this way, we thus
overestimate the answers to queries (Dolby et al. 2007).
Proposition 3. Let K be a knowledge base, and let σ be the
summary function overK. Then, for every conjunctive query
q we have σ(cert(q,K)) ⊆ cert(σ(q), σ(K)).

Summarisation can be exploited to detect spurious an-
swers in S: if a candidate answer is not in cert(σ(q), σ(K)),
then it is not in cert(q,K). Since summarisation can signif-
icantly reduce the size of a knowledge base, we can effi-
ciently detect non-answers even if checking each of them
over the summary requires calling the OWL reasoner.
Corollary 1. Let K be a knowledge base, let q be a query,
let S be a set of tuples, and let K′ = K[q,S] ∪ K⊥. Fur-
thermore, let σ be the summary function over K′. Then,
σ(K′) 6|= σ(q(a)) implies K 6|= q(a) for each a ∈ S.

Data DL Axioms Facts
LUBM(n) SHI 93 105n

UOBM−(n) SHIN 314 2× 105n
FLY SRI 144,407 6,308

DBPedia+ SHOIN 1,757 12,119,662
NPD SHIF 819 3,817,079

Table 3: Statistics for test data

Strategy Solved |Univ| tavg.
RL Bounds 14 1000 10.7

+ EL Lower Bound 22 1000 7.0
+ Sum, Dep 24 100 41.9

Table 4: Result for LUBM

Exploiting dependencies between answers In this last
step, we try to further reduce the calls to the fully-fledged
reasoner by exploiting dependencies between the candidate
answers in S. Consider tuples a and b in S and the datasetD
in the relevant fragment K[q,S] ∪ K⊥; furthermore, suppose
we can find an endomorphism h of D in which h(a) = b.
If we can determine (by calling the fully-fledged reasoner)
that b is a spurious answer, then so must a be; as a result,
we no longer need to call the reasoner to check a. We exploit
this idea to compute a dependency graph having candidate
answer tuples as nodes and an edge (a,b) whenever an en-
domorphism in D exists mapping a to b. Computing endo-
morphisms is, however, a computationally hard problem, so
we have implemented a sound (but incomplete) greedy algo-
rithm that allows us to approximate the dependency graph.

7 Evaluation
We have implemented a prototype based on RDFox and Her-
miT (v. 1.3.8). In our experiments we used the LUBM and
UOBM benchmarks, as well as the Fly Anatomy ontology,
DBPedia and NPD FactPages (their features are summarised
in Table 3). Data, ontologies, and queries are available on-
line.2 We compared our system with Pellet (v. 2.3.1) and
TrOWL (Thomas, Pan, and Ren 2010) on all datasets. While
Pellet is sound and complete for OWL 2, TrOWL relies
on approximate reasoning and does not provide correctness
guarantees. Tests were performed on a 16 core 3.30GHz In-
tel Xeon E5-2643 with 125GB of RAM, and running Linux
2.6.32. For each test, we measured materialisation times for
upper and lower bound, the time to answer each query, and
the number of queries that can be answered using different
techniques. All times are in seconds.

LUBM Materialisation is fast on LUBM (Guo, Pan, and
Heflin 2005): it takes 274s (286s) to materialise the basic
lower (upper) bound entailments for LUBM(1000). These
bounds match for all 14 standard LUBM queries, and we
have used 10 additional queries for which this is not the
case; we tested our system on all 24 queries (see Table 4
for a summary of the results). The refined lower bound was

2http://www.cs.ox.ac.uk/isg/people/yujiao.zhou/#resources



Strategy Solved |Univ| tavg.
RL Bounds 9 500 5.8

+ EL Lower Bound 12 500 9.7
+ Summarisation 14 60 40.2
+ Dependencies 15 1 2.7

Table 5: Result for UOBM−

materialised in 307s, and it matches the upper bound for 8
of the 10 additional queries; thus, our system could answer
22 of the 24 queries over LUBM(1000) efficiently in 11s
on average.3 For the remaining 2 queries, we could scale to
LUBM(100) in reasonable time. On LUBM(100) the gaps
contain 29 and 14 tuples respectively, none of which were
eliminated by summarisation; however, exploiting depen-
dencies between gap tuples reduced the calls to HermiT to
only 3 and 1 respectively, with the majority of time taken
in extraction (avg. 86s) and HermiT calls (avg. 384.7s). On
LUBM(1000), Pellet ran out of memory. For LUBM(100), it
took on average 8.2s to answer the standard queries with an
initialisation overhead of 388s. TrOWL timed out after 1h
on LUBM(100).

UOBM UOBM is an extension of LUBM (Ma et al. 2006).
Query answering over UOBM requires equality reasoning
(e.g., to deal with cardinality constraints), which is not na-
tively supported by RDFox,4 so we have used a slightly
weakened ontology UOBM− for which equality is not re-
quired. Materialisation is still fast on UOBM−(500): it takes
305s (356s) to materialise the basic lower (upper) bound en-
tailments. We have tested the 15 standard queries (see Table
5). The basic lower and upper bounds match for 9 queries,
and this increases to 12 when using our refined lower bound
(the latter took 312s to materialise); our system is efficient
for these queries, with an avg. query answering time of less
than 10s over UOBM−(500). For 2 of the remaining queries,
summarisation prunes all candidate answers. Avg. times for
these queries were under 40s for UOBM−(60). For the one
remaining query, summarisation rules out 6245 among 6509
answers in the gap, and the dependency analysis groups all
the remaining individuals. HermiT, however, takes 20s to
check the representative answer for UOBM−(1), and 2000s
for UOBM−(10). Pellet times out even on UOBM−(1).
TrOWL took 237s on average to answer 14 out of the 15
queries over UOBM−(60);5 however, comparison with our
system reveals that TrOWL answers may be neither sound
nor complete for most test queries.

Fly Anatomy Ontology Fly Anatomy is a complex ontol-
ogy, rich in existential axioms, and including a dataset with
over 6,000 facts. We tested it with five queries provided by
the developers of the ontology. It took 1.7s (5.9s) to ma-
terialise lower (upper) bound entailments. The basic lower
bounds for all queries are empty, whereas the refined lower
bounds (which take 5.7s to materialise) match with the up-

3Avg. query answering times measured after materialisation.
4RDFox axiomatises equality as a congruence relation.
5An exception is reported for the remaining query.

per bound in all cases; as a result, we can answer the queries
in 0.1s on average. Pellet fails to answer queries given a 1h
timeout, and TrOWL returns only empty answers.

DBPedia+ In contrast to Fly, the DBPedia dataset is rel-
atively large, but the ontology is simple. To provide a more
challenging test, we have used the LogMap ontology match-
ing system (Jiménez-Ruiz et al. 2012) to extend DBPedia
with a tourism ontology which contains both disjunctive and
existential axioms. Since the tested systems report errors on
datatypes, we have removed all axioms and facts involv-
ing datatypes. It takes 37.2s (40.7s) to materialise the basic
lower (upper) bound entailments. The upper bound was un-
satisfiable and it took 55.2s to check satisfiability of the K⊥
fragment. We queried for instances of all 441 atomic con-
cepts. Bounds matched in 439 cases (using the refined lower
bound), and these queries were answered in 0.3s on aver-
age. Summarisation filtered out all gap tuples for the other
2 queries; the answer time for these was 58s. Pellet takes
280.9s to initialise and answers each query in an average
time of 16.2s. TrOWL times out after 1h.

NPD FactPages The NPD FactPages ontology describes
petroleum activities on the Norwegian continental shelf. The
ontology is not Horn, and it includes existential axioms.
As in the case of DBPedia, we removed axioms involving
datatypes. Its dataset has about 4 million triples; it takes 8s
(10s) to materialise the lower (upper) bound entailments.
The upper bound is unsatisfiable, and it took 60s to check
satisfiability of K⊥. We queried for the instances of the 329
atomic concepts, and could answer all queries using a com-
bination of lower and upper bounds and summarisation in
5s on average. Queries with matching bounds (294 out of
329) could be answered within 0.035s. Pellet took 127s to
initialise, and average query answering time was 3s. TrOWL
took 1.3s to answer queries on average, and its answers were
complete for 320 out of the 329 queries.

8 Discussion
We have proposed an enhanced hybrid approach for query
answering over arbitrary OWL 2 ontologies. The approach
integrates scalable and complete reasoners to provide pay-
as-you-go performance: 772 of the 814 test queries could
be answered using highly scalable lower and upper bound
computations, 39 of the remaining 42 queries yielded to
scalable extraction and summarisation techniques, and even
for the remaining 3 queries our fragment extraction and de-
pendency techniques greatly improved scalability. Our ap-
proach is complementary to other optimisation efforts, and
could immediately benefit from alternative techniques for
efficiently computing lower bounds and/or a more efficient
OWL reasoner. Furthermore, our technical results are very
general, and hold for any language L captured by gener-
alised rules and over which we want to answer queries; our
only assumption is the availability of a fully-fledged query
engine for L and one for datalog, both used as a “black box”.

There are still many possibilities for future work. For the
immediate future, our main focus will be improving the frag-
ment extraction and checking techniques so as to improve
scalability for the hardest queries.
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